





Blood 142 (2023) 3488-3489

# The 65th ASH Annual Meeting Abstracts

# POSTER ABSTRACTS

# 704.CELLULAR IMMUNOTHERAPIES: EARLY PHASE AND INVESTIGATIONAL THERAPIES

#### Dendritic Cell Vaccines Extend CD19 CAR-T Cell Persistence and Improve the Outcomes in Refractory/Relapsed Adult B-ALL

Sanfang Tu<sup>1</sup>, Lijuan Zhou, MD<sup>1</sup>, Rui Huang, MD<sup>2</sup>, Yanjie He, MD<sup>1</sup>, Xuan Zhou, MD<sup>1</sup>, Jilong Yang, MD<sup>1</sup>, Yuxing Hu, MD<sup>1</sup>, Honghao Zhang, MD<sup>1</sup>, Lung-Ji Chang, PhD<sup>3,4</sup>, Yuhua Li<sup>1</sup>

<sup>1</sup>Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China

<sup>2</sup>Department of Hematology, Zhujiang Hospital, Southern Medical University, GUANGZHOU, China

<sup>3</sup> School of Medicine, University of Electronic Science and Technology of China, Chengdu, Chengdu, China

<sup>4</sup>Geno-Immue Medical Institute, Shenzhen, China

#### Introduction:

The long-term efficacy of anti-CD19 chimeric antigen receptor (CAR)-T cell in refractory or relapsed (r/r) adult B-cell acute lymphoblastic (B-ALL) patients is limited, and the recurrence rate is high. CAR-T cell depletion and limited CAR-T cell persistence are some of the most common reasons for relapse. Our previous in vitro studies confirmed that dendritic cell (DC) vaccines targeting tumor antigens could induce CAR-T cell rejuvenation and increase the killing function of CAR-T cells. So, we designed a clinical trial to study CD19 CAR-T cell combined with DC vaccination for adult r/r B-ALL to explore whether this therapy improves LFS. (clinicaltrials.gov, no: NCT03291444).

#### Methods:

Adult r/r B-ALL patients who expressed HLA-A1101, A2402, or A0201 and had high expression of EPS8 or WT1 were eligible. An EPS8 peptide-derived DC (EPS8-DCs) vaccine was used in EPS8-high patients, while a WT1 peptide-derived DC (WT1-DC) vaccine was used in EPS8-negative patients with WT1 positivity. Lymphodepleting chemotherapy comprising fludarabine (30 mg/m<sup>2</sup>) and cyclophosphamide (300 mg/m<sup>2</sup>) was administered intravenously daily for 3 days before CD19 CAR-T cells infusion. After 4 weeks of CAR-T infusion, if bone marrow morphologic remission had been achieved, DC vaccination was administered intradermally every 2 weeks for 4 doses.

## **Results:**

Eight adult patients with r/r B-ALL were enrolled and successfully received CAR-T cells and DC cells, of which 4 (50%) relapsed after allogeneic hematopoietic stem cell transplantation. They were successfully administered one dose of CD19 CAR-T with a median dose of  $2.26 \times 10^{6}$ /kg (range  $6.4 \times 10^{5}$ /kg to  $4.46 \times 10^{6}$ /kg) on day 0 and four doses of DC vaccination with a median dose of  $5.44 \times 10^{6}$  (range  $2.97 \times 10^{6}$ /dose to  $2.68 \times 10^{7}$ /dose) every 2 weeks after 4 weeks of CAR-T infusion. All eight evaluable patients achieved complete response (CR) after receiving CD19 CAR-T. With a median follow-up of 608 days, the median LFS time was 489 days, and the median OS was not reached. Seven of the eight evaluable patients were still alive. Four (50%) were in continuous MRD-negative remission at the cutoff time, and two of them (pt 02 and pt 03) maintained MRD-negative CR for more than 4 years.

The median peak of CAR-T cell expansion in the PB was detected on day 7 after infusion of CD19 CAR-T. The median persistence time of CAR-T was 336 days (range 84 to 1549 days). CAR-T cells were reamplified after infusion of the DC vaccine. For patients with an LFS of more than 2 years (pt 02, pt 03, and pt 05), CD19 CAR-T cells were still detectable for more than 1 year, with a maximum of 4.2 years in pt 03. The activity of the CTLs measured by IFN- $\gamma$  ELIspot showed that IFN- $\gamma$ -secreting CTLs were significantly increased after DC vaccination. These assays showed that antigen-specific cellular immune activity was enhanced after vaccination.

No grade  $\geq$ 3 cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS) occurred after infusion of 4sCAR19. No grade  $\geq$ 3 events occurred during the infusion of the DC vaccine. Only 1 of 8 patients experienced local skin reactions after infusion of the DC vaccine.

## **Conclusions:**

This study reports a novel combination therapy strategy (CAR-T cell combining with individualized DC vaccination) for adult r/r B-ALL. DC vaccination has higher safety, may prolong the persistence of CAR-T cells, and may prolong the survival time

#### POSTER ABSTRACTS

and quality of life. CAR-T cell therapy combining with DC vaccination is a potential therapy strategy for adult r/r ALL patients who are not eligible for transplantation or who relapse after transplantation.

**Disclosures** No relevant conflicts of interest to declare.

| ID | Age | Sex    | Prior<br>Treatments | Refractory,<br>Number of<br>recurrence | central infiltration | Ph  | Poor prognostic markers                                                                  | Tumor<br>burden at<br>baseline    | CART(10 <sup>6</sup> /kg) | FCM-MRD<br>after CAR-T<br>cells infusion | Peak of<br>CAR-T cells<br>amplificatio | Essential<br>information of DC<br>vaccine infusion | Days interval between<br>CAR-T infusion and<br>vaccine infusion | Relapse,<br>LFS   | Survival, OS        |
|----|-----|--------|---------------------|----------------------------------------|----------------------|-----|------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|------------------------------------------|----------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|-------------------|---------------------|
| 2  | 28  | Male   | 3C, 1T              | Refractory/First<br>recurrence         | no                   | +   | HOX11+/ 46, XY,<br>t(9;22)(q34;q11)                                                      | Blast: 67%;<br>FCM-MRD:<br>81.4%  | 1.29                      | 0.00%                                    | Day 14,<br>0.31%                       | Eps8; 4 dose,<br>total:1.54×10 <sup>7</sup>        | 37                                                              | no                | Alive, 50.5<br>mths |
| 3  | 57  | Male   | 3C                  | Refractory/First<br>recurrence         | no                   | -   | IKZF1+                                                                                   | Blast: 14%;<br>FCM-MRD:<br>12.6%  | 0.78                      | 0.00%                                    | Day 14,<br>52.27%                      | WT1; 4 dose,<br>total:1.19×10 <sup>7</sup>         | 48                                                              | no                | Alive, 49.8<br>mths |
| 4  | 63  | Female | 15C                 | Refractory/First<br>recurrence         | no                   | 741 | IKZF1+/46,XY,t(1:8)(q32:p<br>21)[7]/39-46,<br>idem,add(7)(p11),-9,-<br>19,+r,inc(cp5)[8] | Blast: 66%;<br>FCM-MRD:<br>21.34% | 2.20                      | 0.00%                                    | Day 7,<br>0.71%                        | Eps8; 4 dose,<br>total:1.53×10 <sup>7</sup>        | 117                                                             | yes, 7.3<br>mths  | Death, 10.4<br>mths |
| 5  | 28  | Female | 5C,1T               | Secondary<br>recurrence                | no                   |     | MLL-、FLT3-ITD mutation                                                                   | Blast: 32%;<br>FCM-MRD:<br>24.32% | 2.32                      | 0.00%                                    | Day 7,<br>5.59%                        | WT1; 4 dose,<br>total:3.57×10 <sup>7</sup>         | 38                                                              | no                | Alive, 27.0<br>mths |
| 7  | 69  | Female | 7C                  | First<br>recurrence                    | no                   |     | 2                                                                                        | Blast: 26%;<br>FCM-MRD:<br>16.57% | 0.64                      | 0.00%                                    | Day 7,<br>4.34%                        | WT1; 4 dose,<br>total:2.50×10 <sup>7</sup>         | 51                                                              | yes, 16.3<br>mths | Alive, 17.8<br>mths |
| 8  | 20  | Female | 4C, 1T              | Refractory/<br>Secondary<br>recurrence | no                   |     | 1                                                                                        | Blast: 75%;<br>FCM-MRD:<br>30.11% | 3.23                      | 0.00%                                    | Day 7,<br>13.98%                       | WT1; 4 dose,<br>total:1.9×10 <sup>7</sup>          | 37                                                              | yes, 3.3<br>mths  | Alive, 11.5<br>mths |
| 9  | 37  | Male   | 11C                 | Refractory/<br>First<br>recurrence     | no                   | •   | P190+P210/46,XY,der(9)t<br>(9;22)(q34;q11)(3)/46,XY(<br>23)                              | Blast: 11%;<br>FCM-MRD:<br>4.89%  | 4.19                      | 0.00%                                    | Day 14,<br>4.17%                       | WT1; 4 dose,<br>total:1.07×10 <sup>8</sup>         | 69                                                              | yes, 3.8<br>mths  | Alive, 10.4<br>mths |
| 10 | 32  | Female | 3C, 1T              | Refractory/<br>First<br>recurrence     | no                   | +   | ÷                                                                                        | Blast: 0.5%;<br>FCM-MRD:<br>5.06% | 4.46                      | 0.00%                                    | Day 14,<br>6.321%                      | Eps8; 4 dose,<br>total:5.58×10 <sup>7</sup>        | 50                                                              | no                | Alive, 2.9<br>mths  |

Table. Characteristics and outcomes of evaluable patients.

\*abbreviation: C-chemotherapy; T-Allogeneic hematopoietic stem cell transplantation; mths-months; FCM-flow cytometry; MRD-Minimal residual disease.



Figure. Swimmer plot demonstrating the time point of DC vaccination, the duration of CR, and the statuses of 8 evaluable patients.

Figure 1

https://doi.org/10.1182/blood-2023-186308